

Calcium concentration changes in spider mechanoreceptors during sensory transduction Ulli Höger, Päivi H. Torkkeli and Andrew S. French

Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada

Introduction

Little is known about the roles of Ca²⁺ in transduction and action potential encoding by most mechanorceptors. Intracelular recordings can be performed from sensory neurons in the byriform organ VS-3 of the spider, *Cupicanius salei*, during mechanical stimulation. These neurons have a low voltage activated Ca²⁺ current later can produce action potentials after K² and Na²⁺ currents are blocked, but whose function is unknown. Here, we examined changes in [Ca²⁺] during mechanical stimulation.

Female tropical wandering spider (*Cupiennius salei*) and VS-3 organ on the patella. Each of the nine slits are innervated by a pair of mechanosensory neurons.

Calcium estimation

Neurons received repetitive mechanical pulses, causing one action potential per stimulus [Ca2+] was assumed to follow a single compartment model (Helmchen and Tank 2000): Before action potential firing: [Ca²⁺] = [Ca²⁺]_{Min} t<to During action potential firing: $[Ca^{2+}] = [Ca^{2+}]_{Min} + A(1 - e^{-(t-t_0)/\tau})$ t₀<t<t₁ After action potential firing: $[Ca^{2+}] = [Ca^{2+}]_{Min} + Ae^{-(t-t_1)/\tau}$ t1<t Fluorescence was fitted to this model using: $f = ([Ca^{2+}]f_{Max} + K_D f_{Min})/([Ca^{2+}] + K_D)$ We used $K_{\rm D}$ = 206 nM (Sabatini et al. 2002). $R_{\rm f}$ = $f_{\rm Max}/f_{\rm Min}$ was measured *in vivo* (next box). Linear fit to f_{Max} has slope of -24 µV/s due to dye bleaching Fitted fluorescence Fluorescence signa 10 mV 7 10 AP/s 20 = 20 AP/s = 10 AP/s = 10 AP/s = 2 AP/s = 2 AP/s *~ 800 pM 7 Fitted [Ca2+] 100 s 500 1000 200 nM-Cumulative excitation time (s)

Regional distribution of calcium levels

Fluorescence measurements

We measured [Ca²⁺] in VS-3 neurons by iontophoretic injection of Oregon Green BAPTA-Idye through microelectrodes. Cells were visualized by epiflorescence optics and a 40 water immession objective: The excitation lights source was a Lucone V Star (Zyan LED, and floorescence was detected by an avalanche photodolef. To minimize bleaching, the cells were only illuminated during floorescence measurements following mechanical stimulation.

Calibration of $R_{\rm f}$

The preparation was initially superfused by splice saline (8 mM Ca²⁺), Following dye injection the intracellular electrode was withdrawn (Time = 0) and fluorescence measured at 5 minute intervals. Changing the solution to zero aclium and 10 mM EGTA (first arrow) caused an increase in fluorescence, but addition of 100 µM ionomycia (second arrow) caused a large endexion. Returning to normal 8 mM Ca²⁺ (third arrow) nov ecused a large end rapid increase in fluorescence. $A_{i-f_{Mac}/f_{Su}}$ was estimated to be 3.33 from the highest and lowst fluorescence throw scale. The endexion large scale (10-4) fluorescence 2 minute was R_{i-2}^{-2} skells (10-4).

 $\rm NiCl_2$ blocks low-voltage-activated calcium channels in VS-3 neurons. 100 μM $\rm NiCl_2$ suppressed the increase in [Ca²⁺] (above left). It partially recovered after washing the neuron in normal saline. NiCl_2 did not suppress action potentials (above right).

Conclusions

- Resting calcium concentration in VS-3 neurons was ~400 nM and increased to a maximum level of ~2 µM at high firing rates.
- Calcium enters through voltage-activated calcium channels opened by action potentials. Nickel blocks the channels and prevents the calcium rise.
- Calcium entry is abolished by TTX. No evidence was seen for calcium entry through mechanically-activated channels. The receptor potential is too small to open voltage-activated calcium channels.
- Thapsigargin (50 μM) had no effect on calcium levels (data not shown), indicating that calcium release from internal stores is not significant.
- Maximum calcium flow would carry charge of ~2 x 10⁻¹³ C/AP. Voltage clamp measurements of calcium currents predict ~6 x 10⁻¹³ C/AP.
- Calcium rise and fall was slower in the soma and the distal sensory dendrite. The soma has a relatively large ratio of volume-to-surface area.
- Resting and stimulated calcium levels were similar in all cell regions, suggesting that calcium channels and extrusion mechanisms are distributed throughout the cell.

References Heineken F, Rahk D W (2000) Asingle-compariment model of calcium dynamics in nerve terminals and dendrins. In: Yaste, R., Lamii, F. & Komenth, A., (eds), *Imaging marons, a laboratory manual.* Cold Spring Harbox Laboratory Press, Cold Spring Harbox New York, pp. 331-3311: Shatimi, BL., Corener, FG & Svobeda, K. (2002) The life cycle of Cu(2+) ions in dendrinic spines. *Neuron* 33, 439-452.