

Regional calcium changes in spider mechanoreceptors during sensory transduction Ulli Höger, Shannon Meisner, Päivi H. Torkkeli and Andrew S. French Store-Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada

Introduction

Little is known about the roles of Ca²⁺ in transduction and action potential encoding of most mechanoreceptors. An isolated, but otherwise intact, preparation of the lyriform organ VS-3 of the spider, *Cupiennius salei*, allows intracellular recording from sensory neurons during mechanical stimulation and calcium imaging. Ca²⁺ enters these cells through low voltage activated Ca²⁺ channels, leading to a significant increase in free intracellular calcium [Ca²⁺]_i when the cells are firing action potentials. In previous studies $[Ca^{2+}]_i$ was estimated to be ~70 nM in resting VS-3 neurons, rising to ~300 nM during rapid action potential firing. Blockade of action potentials by TTX showed that Ca²⁺ does not enter through mechanotransduction channels.

Here, we examined the time course and amplitude of [Ca²⁺]_i changes in response to single action potentials in three peripheral regions (soma, axon, dendrite) of VS-3 neurons. We show a correlation between Ca²⁺ increase and low voltage activated Ca²⁺ channel distribution, and suggest that [Ca²⁺]_i modulates mechanotransduction.

Female tropical wandering spider (*Cupiennius salei*) and VS-3 organ on the patella. Each of the nine cuticular slits is innervated by a pair of mechanosensory neurons.

Fluorescence measurements

The Ca²⁺ sensitive dye Oregon Green BAPTA-1 (OG488) was injected iontophoretically into VS-3 neurons through microelectrodes. Dye loaded cells were visualized by epifluorescence optics and a x40 water immersion objective, using high intensity Luxeon V Star Cyan LEDs as the excitation light source. Illumination of the preparation was restricted to a 50 µm circle by apertures in the light path. OG 488 fluorescence was detected and quantified by an avalanche photodiode module or imaged by a digital camera. To minimize bleaching, cells were only illuminated during the brief times required to make fluorescence measurements or obtain images.

In some experiments caged Ca²⁺ (NP-EGTA) was co-injected with OG488, and controlled release of Ca²⁺ was achieved by UV light flashes (100 ms duration, 1 Hz)

LVA calcium channels in VS-neurons

Left: Confocal two dimensional reconstruction of the main leg nerve, labeled with an antibody against the Ca_V3.1($\alpha_{1\sigma}$) isotype of low voltageactivated (LVA) Ca^{2+} channels. Axons (white arrows) and somata (orange arrow) of VS-3 neurons show intense striped labeling.

Right: When the Ca_V3.1 antibody was preincubated with control antigen no labeling was detected in VS-3 neurons (asterisks somata, arrows axons). Scale bars: 20 µm.

Double labeling of VS-3 neurons with anti- $Ca_V 3.1$ (CY-3) and anti-synapsin (Alexafluor 488). $Ca_V 3.1$ labeled stripes were abundant in dendrites (*yellow* and blue arrows) and somata (asterisks). Synapsin labeled efferent neurons surround all parts of the VS-3 neurons. In some areas Ca_V3.1 labeling was closely associated with anti-synapsin labeling. Scale bars: 20 µm. Synapsin antibody was generously provided by Dr. Erich Buchner, Würzburg.

Western blots of spider brain and leg hypodermis homogenates with anti-Ca_V3.1 antibody showed clear bands at ~160 kDa and ~45 kDa. These bands were not present when the antibody was pre-incubated with control antigen.

[Ca²⁺]_i change induced by single action potentials

[Ca²⁺]_i rose in all regions of VS-3 neurons following mechanically-induced action potentials.

Photographic imaging of the time course of $[Ca^{2+}]_i$ change induced by a single action potential.

This series of time shifted images shows that the increase of $[Ca^{2+}]_i$ peaked ~50 ms after an action potential elicited by mechanical stimulation

Time shifted images were obtained with a conventional digital camera in long time exposure mode (exposure time 5 min). During exposure the neuron was subjected to a series of 23 mechanical step stimuli (15 ms duration), each eliciting a single action potential. By varying the time delay between mechanical stimulus and a 15 ms pulse of excitation light, images at different time windows were captured. Background fluorescence was subtracted by creating control images using exactly the same exposure protocol, but without mechanical stimulation.

Quantitative imaging of the time course of $[Ca^{2+}]_i$ change induced by a single action potential.

The time course of $[Ca^{2+}]_i$ change following action potentials in three different regions of a VS-3 neuron. Fluorescence traces $(\Delta f / f)$ were obtained by averaging the fluorescence changes in responses to individual action potentials (n= 30-100 trials). Each averaged data set was fitted (red solid line) with the following function:

$$\Delta f / f = a(e^{-t/c} - e^{-t/b})$$

where t = time, a = amplitude constant, b = time constant of fluorescence increase following a stimulus, c = time constant of fluorescence decrease after stimulus induced peak.

Mean values of fitted parameters indicate similar time courses of $[Ca^{2+}]_i$ change in the dendrite, soma, and axon. The only significant difference (P< 0.05, unpaired t-test) was found in the peak amplitudes measured in dendrite and soma, probably due to the different volume to surface area ratios

Parameter (mean ± SD)	Dendrite	Soma	Axon
b (ms)	6.4 ± 5.9	5.4 ± 2.6	$\begin{array}{rrr} 4.6 & \pm 2.01 \\ 1.24 & \pm 0.49 \end{array}$
c (s)	1.04 ± 0.54	1.30 ± 1.30	
Peak amplitude	$0.015 \pm 0.001^*$	$0.009 \pm 0.006*$	0.011 ± 0.009
Time to neak (ms)	19.2 + 14	22.7 + 11.0	16.4 ± 5.7
Number of cells	17.2 ± 14	52 ± 11.0	10.4 ± 3.7

Tedical Research

Modulation of receptor potential by [Ca²⁺]_i

In a neuron co-loaded with OG 488 / caged Ca²⁺ (NP-EGTA) and treated with 1 µM TTX to prevent action potential generation and Ca²⁺ entry through voltage activated Ca²⁺-channels, UV light flashes (100 ms, 1 Hz) were used to release caged Ca²⁺ and to increase [Ca²⁺]_i. Mechanically induced receptor potentials (80 ms duration) were recorded during the UV induced increase of [Ca²⁺]; and the subsequent recovery to baseline.

The upper trace shows the increase in [Ca²⁺]_i by release from caged Ca²⁺. The lower trace shows changes in the receptor potential amplitude in close correlation with the increase of [Ca²⁺]_i. The lowest traces show actual recordings of the receptor potential before, during, and after the release of caged Ca²⁺.

There was a decrease in the receptor current amplitude, both peak and plateau, as $[Ca^{2+}]_i$ increased.

Conclusions

Peak values of $\Delta f / f$, determined by quantitative imaging, correspond to an increase of ~1 nM [Ca²⁺] per action potential in the soma, compatible with rises seen previously in response to rapid action potential firing, and with measured calcium currents.

Elevations of [Ca²⁺]_i in the dendrite, soma, and axon following an action potential follow a time course that can not be explained by simple diffusion from a localized entry site.

Instead, extracellular Ca²⁺ probably enters the dendritic, somatic, and axonal areas through voltage activated Ca²⁺ channels, which open when action potentials travel rapidly from the distal dendrite throughout the entire neuron.

A widespread distribution of $Ca_V 3.1$ isotype of LVA Ca^{2+} channels in VS-3 neurons suggests that these channels allow Ca²⁺ entry during action potential firing.

Close proximity of $Ca_V 3.1$ and synapsin labeling suggests that these channels may also play some role in the complex peripheral efferent modulation previously described in VS-3 neurons.

Mechanotransduction and action potential initiation occur in the sensory dendrites of VS-3 neurons. Location of voltage activated Ca²⁺ channels in the dendrites, the rapid rise of Ca²⁺ concentration during excitation, and the reduction of receptor potential by elevated intracellular [Ca²⁺], all indicate that changes in intracellular Ca²⁺ regulate receptor sensitivity by one or more negative feedback mechanisms.